Submodular spectral functions of principal submatrices of a hermitian matrix, extensions and applications
نویسندگان
چکیده
We extend the multiplicative submodularity of the principal determinants of a nonnegative definite hermitian matrix to other spectral functions. We show that if f is the primitive of a function that is operator monotone on an interval containing the spectrum of a hermitian matrix A, then the function I 7→ trf(A[I]) is supermodular, meaning that trf(A[I])+trf(A[J ]) 6 trf(A[I∪ J ]) + trf(A[I ∩ J ]), where A[I] denotes the I × I principal submatrix of A. We discuss extensions to self-adjoint operators on infinite dimensional Hilbert space and to M -matrices. We discuss an application to CUR approximation of nonnegative hermitian matrices. 2010 Mathematics Subject Classification. 15A18, 15B57, 90C10
منابع مشابه
An Observation about Submatrices
Let M be an arbitrary Hermitian matrix of order n, and k be a positive integer ≤ n. We show that if k is large, the distribution of eigenvalues on the real line is almost the same for almost all principal submatrices of M of order k. The proof uses results about random walks on symmetric groups and concentration of measure. In a similar way, we also show that almost all k × n submatrices of M h...
متن کاملSome Results about the Contractions and the Pendant Pairs of a Submodular System
Submodularity is an important property of set functions with deep theoretical results and various applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization. Nowadays submodular functions optimization has been attracted by many researchers. Pendant pairs of a symmetric...
متن کاملComputing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کاملCut-norms and spectra of matrices
One of the aims of this paper is to solve an open problem of Lovász about relations between graph spectra and cut-distance. The paper starts with several inequalities between two versions of the cut-norm and the two largest singular values of arbitrary complex matrices, extending, in particular, the well-known graph-theoretical Expander Mixing Lemma and giving a hitherto unknown converse of it....
متن کاملExtended Jacobi and Laguerre Functions and their Applications
The aim of this paper is to introduce two new extensions of the Jacobi and Laguerre polynomials as the eigenfunctions of two non-classical Sturm-Liouville problems. We prove some important properties of these operators such as: These sets of functions are orthogonal with respect to a positive de nite inner product de ned over the compact intervals [-1, 1] and [0,1), respectively and also th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010